skip to main content


Search for: All records

Creators/Authors contains: "Lehman, Julia H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This New Views article will highlight some recent advances in high sensitivity gas detection using direct infrared absorption frequency comb laser spectroscopy, with a focus on frequency comb use in chemical reaction kinetics and our own contribution to this field. Our recently implemented detection technique uses a combination of a 12.9 GHz free spectral range virtually imaged phased array and diffraction grating to spatially disperse the mid-infrared frequency comb onto a camera. Individual frequencies or ‘comb teeth’ of a 250 MHz repetition-rate frequency comb are able to be resolved. High molecular sensitivity is achieved by increasing the interaction path length using a Herriott multipass cell. High spectral resolution, broadband spectral coverage, and high molecular sensitivity are all achieved on an adjustable 1–50 µs timescale, making this frequency comb apparatus ideal for measuring chemical reaction kinetics where multiple absorbing species can be monitored simultaneously. This New Views article will also discuss some of the challenges and decisions that chemists might face in implementing this advanced physics technology in their own laboratory. Spatially dispersed 250 MHz mid-infrared frequency comb laser, with absorption of some frequencies by a dilute sample of methane. KEYWORDS: Frequency combs, chemical kinetics, trace gas detection 
    more » « less
  2. The anionic products following (H + H + ) abstraction from o -, m -, and p -methylphenol (cresol) are investigated using flowing afterglow-selected ion flow tube (FA-SIFT) mass spectrometry and anion photoelectron spectroscopy (PES). The PES of the multiple anion isomers formed in this reaction are reported, including those for the most abundant isomers, o -, m - and p -methylenephenoxide distonic radical anions. The electron affinity (EA) of the ground triplet electronic state of neutral m -methylenephenoxyl diradical was measured to be 2.227 ± 0.008 eV. However, the ground singlet electronic states of o - and p -methylenephenoxyl were found to be significantly stabilized by their resonance forms as a substituted cyclohexadienone, resulting in measured EAs of 1.217 ± 0.012 and 1.096 ± 0.007 eV, respectively. Upon electron photodetachment, the resulting neutral molecules were shown to have Franck–Condon active ring distortion vibrational modes with measured frequencies of 570 ± 180 and 450 ± 80 cm −1 for the ortho and para isomers, respectively. Photodetachment to excited electronic states was also investigated for all isomers, where similar vibrational modes were found to be Franck–Condon active, and singlet–triplet splittings are reported. The thermochemistry of these molecules was investigated using FA-SIFT combined with the acid bracketing technique to yield values of 341.4 ± 4.3, 349.1 ± 3.0, and 341.4 ± 4.3 kcal mol −1 for the o -, m -, and p -methylenephenol radicals, respectively. Construction of a thermodynamic cycle allowed for an experimental determination of the bond dissociation energy of the O–H bond of m -methylenephenol radical to be 86 ± 4 kcal mol −1 , while this bond is significantly weaker for the ortho and para isomers at 55 ± 5 and 52 ± 5 kcal mol −1 , respectively. Additional EAs and vibrational frequencies are reported for several methylphenyloxyl diradical isomers, the negative ions of which are also formed by the reaction of cresol with O − . 
    more » « less